
Factsheet on Imogolites Case Study
The EU H2020 project HARMLESS (grant agreement number 953183) develops a novel, multifaceted Safe Innovation Approach to complex multi-component nanomaterials and High Aspect Ratio Nanoparticles (MCNM & HARNs) by integrating a toolbox of New Approach Methodologies (NAMs), which can test key properties according to latest scientific insights into MCNM & HARNs. To ensure that industries operating at differing scale, including SMEs, pick up HARMLESS’ approach, the project has created a user-friendly decision support system which is validated iteratively at scale in different case studies, which allows the testing, verification and improvement of the HARMLESS’ Safe-by-Design and Safe Innovation Approaches in different industrial sectors.
This factsheet briefly summaries the key facts of the case study on imogolites for agriculture and environmental plant protections (Material: modified Imogolites), including an explanation of the material, its functionality and application, the objectives of the case study, how the case study was implemented, its benefits and impacts on the SDGs, outcomes of the case study, as well as the partners involved in the case study.
Treatment against plant pathogenic micro-organisms should provide high efficacy to avoid major economic losses and minimal public health and environmental risks. In this context, aluminosilicate clays materials in the form of tubular structure (named imogolites) are developed to be used as an environmentally friendly alternatives pesticide or treatment against fungi in particular downy mildew. The typical nanostructure of the imogolites and their particular redox properties and surface reactivity properties offer an original new approach for environmental friendly alternative for pesticides.
In HARMLESS, the work on the case study on imogolites has been coordinated by the partner CEA. The factsheet has been created by HARMLESS C&D manager, BNN.
This document is available in the HARMLESS Community in Zenodo under DOI: 10.5281/zenodo.14976837
Â
List of references:
- Wohlleben, W., Persson, M., Suarez-Merino, B., Baun, A., Di Battista, V., Dekkers, S., van Someren, E.P., Broßell, D., Stahlmecke, B., Wiemann, M., Schmid, O., Haase, A. (2024). Advanced materials earliest assessment (AMEA). Environmental Science: Nano, Vol. 11 (7), 2948-2967. DOI: 1039/d3en00831b
- Picot, P., Gobeaux, F., Charpentier, T., Belloni, L., Takahara, A., Wada, S. I., & Thill, A. (2024). Diameter and chirality of natural and synthetic imogolite. Applied Clay Science, 258, 107497. DOI: 10.1016/j.clay.2024.107497
- Picot, P., Taché, O., Malloggi, F., Coradin, T., & Thill, A. (2016). Behaviour of hybrid inside/out Janus nanotubes at an oil/water interface. A route to self-assembled nanofluidics?. Faraday Discussions, Vol. 191, 391-406. DOI: 10.1039/C6FD00034G
- Picot, P., Liao, Y., Le Caër, S. A., Coradin, T., & Thill, A. (2017). Recent progress in the synthesis of imogolite and imogolite-like clay minerals. A focus on the sphree-tube transition. In 15ème colloque du groupe Français des Argiles. https://cea.hal.science/cea-02338913v1
- Picot, P., Lange, T., Testard, F., Gobeaux, F., & Thill, A. (2023). Evidence and importance of intermediate nanostructures in the journey from molecular precursors to allophane and imogolite nanocrystals. Applied Clay Science, 241, 107013. DOI: 10.1016/j.clay.2023.107013
- Yuan, P., Thill, A., & Bergaya, F. (2016). Nanosized tubular clay minerals: Halloysite and Imogolite (Vol. 7). Elsevier. ISBN: 978-0-08-100293-3 / ISSN: 1572-4352
- Rouleau, A. Thill et O. Poncelet. “Procédé de fabrication de nanotubes hybrides d’imogolite“. Brevet WO/2014/080370
- Pierre Picot, Antoine Thill. “Utilisation de polymères d’aluminosilicate à titre d’ingrédient actif contre les microorganismes phytopathogènes“. FR3136932A1 and WO/2024/002971A1
- Link for PRODIGE set-up:Â https://iramis.cea.fr/en/nimbe/lions/nanotubes-d-imogolites-aluminosilicates-et-aluminogermanates-synthese-et-proprietes/
- United Nations Sustainable Development Goals (UN SDGs).